A study of Taiwan's issuer credit rating systems using support vector machines
نویسندگان
چکیده
By providing credit risk information, credit rating systems benefit most participants in financial markets, including issuers, investors, market regulators and intermediaries. In this paper, we propose an automatic classification model for issuer credit ratings, a type of fundamental credit rating information, by applying the support vector machine (SVM) method. This is a novel classification algorithm that is famous for dealing with high dimension classifications. We also use three new variables: stock market information, financial support by the government, and financial support by major shareholders to enhance the effectiveness of the classification. Previous research has seldom considered these variables. The data period of the input variables used in this study covers three years, while most previous research has only considered one year. We compare our SVM model with the back propagation neural network (BP), a well-known credit rating classification method. Our experiment results show that the SVM classification model performs better than the BP model. The accuracy rate (84.62%) is also higher than previous research. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملFinancial credit risk measurement prediction using innovative soft-computing techniques
Correct default risk classification of an issuer is a critical factor. Practitioners and academics alike agree on this. Thus, under the supervision of financial experts, significant resources of investment advisory companies are used for this task. Researchers, both theoretical and empirical ones, are not the exception either. Nowadays, many methodological and technical advances allow support f...
متن کاملGenetic Algorithms for the Optimization of Support Vector Machines in Credit Risk Rating
The assessment of credit risk usually involves the development of rating models that classify credit applicants (firms or individuals) into predefined risk groups. A plethora of methodologies have been proposed to develop such rating models. Among them support vector machines (SVMs) have rapidly evolved in statistical learning theory as new modeling technique for developing classification model...
متن کاملSupport vector machines in ordinal classification
Risk assessment of credit portfolios is of pivotal importance in the banking industry. The bank that has the most accurate view of its credit risk will be the most profitable. One of the main pillars in assessing credit risk is the estimated probability of default of each counterparty, i.e., the probability that a counterparty cannot meet its payment obligations in the horizon of one year. A cr...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 30 شماره
صفحات -
تاریخ انتشار 2006